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Abstract. This work describes a general procedure for the determination of Fick’s diffusion
coefficients associated to the evaporation process in ternary mixtures involving light
hydrocarbons at high pressure. The non-idealities in the vapor and liquid phases that
naturally arise in this situation are taken into account by the application of thermodynamical
corrections to perfect gas results. Application of the theory is then exemplified for the case of
an C5-C1-N2 mixture at 101 bar abs and 38.5°C. Numerical results are presented and the
applicability of the perfect gas model to this case is discussed.
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1. INTRODUCTION

The petroleum extracted in the primary exploitation phase of fractured reservoirs comes
essentially from the fractures. In fact, at the end of this phase, a great deal of oil is still
trapped in the pores of the solid matrix. One solution to recover this matrix oil is to inject a
dry gas in the reservoir. The oil in the matrix vaporizes and feeds by diffusion the gas
circulating in the fractures. This technique allows, theoretically, a total recovering of light and
intermediate fractions of the oil.

The analysis and modeling of this recovering process is complex, since an oil is made up
by dozens of different components (Gravier, 1986). For this reason, it is common practice to
perform laboratory experiments to try to isolate the important parameters. One such
experiment was carried out by Morel et al. (1990), who took a sample bar of chalk, initially
saturated with a mixture of pentane and methane (C5-C1) under typical conditions of an
oilfield (101 bar abs and 38.5°C), and used methane as injection gas (experiment C5-C1) and
nitrogen (experiment C5-C1-N2). They noticed that the methane was more efficient as a
recovering agent than the nitrogen and also that these two cases were phenomenologically
different. However, the explanation for this difference and even an optimization of the
process would demand results for a wide range of the operating parameters, and also more
information about what happens at the pore level of the matrix block, what can be more easily



accomplished with the aid of numerical simulations in porous media. Examples of such
simulations can be found in Laurindo and Prat (1998) and Prat (1995).

This is a problem of transport in porous media, where an appropriate theoretical
macroscopic representation must be preceded by the complete comprehension of the diffusion
phenomena that occur at the microscopic level. In each pore, an elementary diffusional
process takes place, where a binary mixture of pentane and methane C5-C1, initially at liquid-
vapor equilibrium, is exposed to the passage of a gas current. This gas diffuses in the mixture
at the same time that methane and pentane are recovered at the outlet. If the injection gas is
also methane, it is a binary diffusion problem, and the diffusion molar fluxes J (moles/m2.s)
can be represented by Fick’s law:
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where ct is the total molar fraction (moles/m3), x1 is the molar fraction of species 1, and where
the coefficient  '12 (m

2/s), called "molecular diffusion coefficient " ('12= '21), is constant.
On the other hand, in the recovering with nitrogen, the basic event is the ternary diffusion in
C5-C1-N2. In this case, the modeling can be done by an extension of Fick’s law:
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Equation (2) keeps the structurally simple form of the binary case, but in this case there
are “crossed coefficients” establishing connections between flux of one component and
gradient of the other and the relationship between the ternary coefficients (Dij) and the
molecular ones ('ij) involves a strong dependence on the concentrations, even for perfect
gases. Besides, under high-pressure conditions and for liquids, the perfect gas model cannot
be applied and the real coefficients may present significant deviations from the ideal ones.

Therefore, a precise determination of Fick’s coefficients is essential for the theoretical
modeling of recovering by diffusion in a fractured reservoir. Such an evaluation is particularly
difficult in the ternary case, where the coefficients have to be determined to a wide range of
concentration values and in conditions that must resemble those of a real reservoir. This work
presents a complete description of a numerical determination of the Fick’s diffusion
coefficients associated to the evaporation process in an C5-C1-N2 mixture at 101 bar abs and
38.5°C, taking perfect gas results and applying thermodynamical corrections for the non-
idealities in the vapor and liquid phases.

The final coefficients are the combination of the results of three separated analysis: i) the
dependence of the ternary coefficients on the concentrations for perfect gases, ii) the
quantification of the non-idealities for the two phases and iii) the determination of the
molecular coefficients for the two phases.

2. CALCULATION OF FICK’S COEFFICIENTS

2.1 Fick’s coefficients for the ternary diffusion in perfect gases

For perfect gases, the relationship between binary and ternary diffusion coefficients
comes from the Kinetic Theory of Gases, as given by Maxwell-Stefan’s formulation:
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where id
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 is the diffusion potential for component “i” and 'ij is the molecular coefficient

associated to the pair “i-j”. This formula can be inverted, to produce:
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where B is a coefficient matrix defined by (i=1,2 and j=1,2):
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Therefore, for ideal ternary mixtures, Fick’s coefficients [Did] can be expressed as functions
of the molecular coefficients (') related to each pair i-j and of the molar concentrations xi as

[ ] [ ] 1−= BDid , that is,
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where the function S is given by:
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2.2 Thermodynamical correlations for the non-idealities

Taylor and Krishna (1993) suggest that a good way to adapt Eqs. (6) to (10) to high-
pressure gases and to liquids is to redefine the potential “d” on the basis of the chemical
potential µ:
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Moreover, using the more practical concept of fugacity, )( ii lnfRTdd =µ , Eq. (11) can be

rewritten as:
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allowing Maxwell-Stefan’s diffusion potential for non-ideal fluids to be written in a compact
form as:
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where the matrix Γ is defined by:
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where δij is the identity matrix and ϕ is the fugacity coefficient, defined by ( )Pxf iii =ϕ .

Calculation of the fugacity coefficient, ϕ. Prausnitz et al. (1986) show that an expression
for the calculation of ϕ can be obtained using volumetric relations, such as

,...),,,(F 21 nnPTV = , and applying the definition of fugacity, which leads to:
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where iv  is the partial molar volume. A good precision for Eq. (15) depends only on the

precision achieved by the PVT relation chosen to represent component i’s properties inside a
mixture.

According to Conrard and Gravier (1980), one of the most precises PVT relations to the
representation of natural hydrocarbons is the Peng-Robinson  (1976) equation of state:
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where P is pressure (Pa), v is molar volume (m3/mol), R is the universal constant of gases
(R=8.3143 (J/gmol.K)), and “a” and “b” are constants that depend on the substance being
represented. Equation (16) is originally associated to the description of a pure substance, but it
can also represent a mixture of hydrocarbons, provided that appropriate values to the
parameters “a” and “b” be supplied. The values of “a” and “b” for mixtures can be obtained
from the corresponding values to pure substances with the aid of “mixing rules”, as described
by Peng and Robinson (1976). The values of the critical properties and the accentricity factor
for the components of the ternary mixture C5-C1-N2, needed for the application of Peng-
Robinson equation, can be found in Walas (1985) and Perry (1950).

The substitution of Eq. (16) into Eq. (15) leads, after the integration, to the expression
shown by Peng and Robinson (1976) for the theoretical determination of the fugacity
coefficient of a component “i” in a mixture, as a function of the molar concentration:
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where ( )22TRPaA mixt=  , ( )RTPbB mixt=  , ( )RTPvZ /=  and:
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In order to be used in the thermodynamical corrections, the derivative of Eq. (17) must
be obtained, which leads to:
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where:
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and where the derivatives of the parameters “a” and “b” are obtained directly from the
definitions shown in Peng and Robinson’s  work.

Finally, Peng and Robinson showed in their work that the state equation that they propose
can be inverted to the form:
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which completes the formulation of the fugacity coefficients.



2.3 Molecular coefficients for the vapor phase

According to Bird et al. (1960), the diffusion coefficients for the gaseous mixtures can be
determined by the Kinetic Theory of Gases with an error of less than 5%. The expression
presented by Bird et al. for a perfect gas at low density is:
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In the expressions above, ' is the molecular diffusion coefficient (m2/s); Mi is the molar
mass of component i (g/mol); P is the pressure (Pa); T is the temperature (K); ( ) 2jiij σσσ +=

is the average collision diameter (Å); 
ijkT ετ = , where 

jiij εεε =   is an average energy

(J/molecule) and k is the Boltzmann constant; ΩD is a dimensionless function of the
temperature and of the intermolecular field for one molecule of “i” and one of “j”. The values
of the physical constants are shown in Table 1.

Table 2. Constants for the calculation of molecular
diffusion coefficients (Latil, 1991).

Component σ (Å) ε/k (K)
n-Pentane (C5) 5.784 341.1
Methane (C1) 3.758 148.6
Nitrogen (N2) 3.798   71.4

Application of Eq. (25) for the ternary gaseous mixture of pentane (i=1), methane (i=2)
and nitrogen (i=3) at 38.5°C and 101 bar abs yielded the values: 8

12 10067.9 −×=V
'  (m2/s),

8
13 10912.8 −×=V
'  (m2/s) and 8

23 10955.23 −×=V
'  (m2/s).

2.4 Molecular coefficients for a concentrated liquid mixture

Differently from the case of the ideal gaseous mixtures, the molecular coefficients for the
liquid mixtures can be strongly dependent of the concentration. According to Taylor and
Krishna (1993), in a concentrated liquid mixture, this dependence can be well expressed by:
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where xi is the molar fraction of component “i” in the mixture and ∞
ij'  is the coefficient of

molecular diffusion of component "i" in "j" when i is infinitely diluted in j.
For the evaluation of the binary molecular coefficients in a liquid mixture at high dilution

state, Taylor and Krishna suggest the use of the semi-empirical correlation proposed by Wilke
and Chang (1955):
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In Eq. (28), ∞
ij'  is the coefficient (cm2/s); Mj is the molar mass of the solvent (g/mol); T

is the temperature (K); µ is the viscosity of the solvent (mPa.s); boil
iv  is the molar volume of

the solute i at his normal boiling point (at 1 atm) (cm3/mol); φj is an association parameter for
the solvent, whose values are 2.26 for water and 1.0 for non-polar solvents like hydrocarbons.

2.5 Fick’s coefficients for diffusion in non-ideal fluids

Combining Eqs. (4) and (13), Fick’s coefficients for ternary diffusion, corrected to take
into account the thermodynamical non-idealities of the real mixture, Dni, can be written as a
function of the binary (molecular) coefficients and of the composition of the mixture as:
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which means, explicitly, for i=1,2 and j=1,2:
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So, the characterization of Fick’s coefficients for the ternary case reduces to the
calculation of 4 molecular coefficients for the composition of the ideal matrix Did of the vapor
phase and 4 for the liquid phase. Then, when the 2 ideal matrices are assembled, the 2
fugacity coefficients (ϕi) for the vapor phase and 2 for the liquid phase must be calculated, for
the composition of the correction matrix Γ. Equation (29) completes the operation.

3. RESULTS

With the formulation described above, ternary diffusion coefficients were calculated for a
liquid-vapor mixture of C5-C1-N2 (i=1,2,3, respectively) at 38.5°C and 101 bar abs,
assuming thermodynamical equilibrium at the interface. The hypothesis of equilibrium at the
interface restricts the range of values that can be assumed by the molar concentrations of both
phases. As shown in Fig. 1, depending on the combination of the three molar concentrations,
one point in the ternary diagram of equilibrium may fall in one of three regions: the vapor
region, the liquid region and liquid-vapor equilibrium region. Values of the diffusion
coefficients need only to be calculated for the respective region.

Some results for the vapor phase are shown in Fig. 2, for yC5=0.033 (0≤yC1≤0.945). In a
real diffusion problem in a reservoir, these variables are limited by the injected gas condition
(pure nitrogen) on one side and by the equilibrium at the interface with the liquid on the other
side. So, variable yC5 is fixed to fall into the vapor region and variable yC1 is determined in
order to respect the equilibrium curve corresponding to the vapor in the ternary diagram.
From this figure, it is apparent that coefficient D12 is always very small compared to the
others and can be neglected, while the other crossed coefficient, D21, is significant and must
be considered. The graphic shows also the importance of taking into account the non-
idealities: the ideal model would be acceptable for the calculation of D12 and D22, but D11 and
D21 must be corrected. Besides, it is clear that coefficients D11, D12 and D22 present very little
variation in all the relevant range, while coefficient D21 undergo a strong variation with yC1.
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Figure 1 - Ternary diagram for C5-C1-N2 (P=101 bar abs., T=38.5°C).
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Figure 2 - Fick’s coefficients for diffusion in the vapor phase of a
liquid-vapor mixture of C5-C1-N2 (yC5 = 0.033).

In the liquid phase, the relevant values of molar concentration are limited by ternary
equilibrium condition at the interface with the vapor and by the condition that corresponds to
the binary equilibrium C5-C1, found before N2 injection. Figure 3 shows the values of the
coefficients for x1=0.717 and 0.195≤x2≤0.283 (for situating in the relevant region). Like the
vapor case, D12 is the less important coefficient, and, taking non-ideal results, it represents no
more than 20% of the leading coefficient D11. Also evident from the figure is the strong
variation with concentration of all the coefficients. Besides, figure 3 shows, as expected, that
the thermodynamical corrections in the liquid phase lead to much more significant differences
between ideal and non-ideal models than in the vapor phase.
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Figure 3 - Fick’s coefficients for diffusion in the liquid phase of a
liquid-vapor mixture of C5-C1-N2 (xC5=0.717).

As a final observation, Fig. 2 indicates that the diffusion coefficients in the vapor phase
have an order of about 10-7, while Fig. 3 denotes that in the liquid phase these coefficients are
of order 10-8. Hence, the diffusion coefficients in the vapor phase are roughly 10 times bigger
than those in the liquid phase. This is not enough to take the process in the vapor as quasi-
static in comparison to a transient in the liquid, as is currently done, for example, at normal
atmospheric conditions (Jaffrenou, 1995), where vapor coefficients can be of the order of a
thousand times the liquid coefficients.

4. CONCLUSION

This work discussed the modeling of Fick’s coefficients for ternary diffusion. Such an
analysis is essential for the numerical simulation of light oil secondary exploitation in
fractured reservoirs by means of evaporation. These coefficients are usually determined with
the aid of experiments, very complicated in the conditions of a real reservoir, or with the
application of excessively simplified models, which treat liquids as perfect gases.

Applying thermodynamical corrections to the expressions derived from the Kinetic
Theory of Gases, it was possible to obtain theoretically the values of Fick’s coefficients for
the mixture C5-C1-N2 under the conditions of a typical reservoir (101 bar abs and 38.5°C).
Analysis of the results revealed that from the four coefficients associated with the vapor
phase, D12 could be neglected in the use of Fick’s law for both phases. The other coefficients
are all important and must be considered.

Numerical results allowed also to quantify the error committed in considering the fluids
in a reservoir at high-pressure as perfect gases. In a general way, the perfect gas model can
only be used as the starting point for the determination of more realistic coefficients. As a
final conclusion, the results obtained indicate that, at high-pressure conditions, Fick’s
coefficients for the vapor are roughly ten times bigger than those for the liquid.
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